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I Why?
Lorentz-force detuning, microphonics
and power requirements

II How?
The piezoelectric tuner: principle, layout, control, ...

III Can it work?
Reliability: high dynamic operation, low temperature, radiation,
Controllability: coupling to mechanical modes

IV First Results
The piezo as a sensor: microphonics, mechanical oscillations,
The piezo as an active element: lorentz-detuning compensation

and Microphonics



I  Why?

• Pulsed Operation of s.c. Cavities:
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TESLA: 950µs flat top
5 to 10 Hz repetition rate

SNS: 1 ms flat top
60 Hz (!) repetition rate

Lorentz-vibration model: differential equation for mode #k:
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electromagnetic field exerts

deformation of cavity

resonance frequency shift∆f

⇓

⇓

Lorentz-forces

(detuning) ∆f f cav f gen–=
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• Lorentz-Force Detuning:
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• The Problem:

detuning of cavity during 950µs FT:

           TESLA 9-cell cavity:

K=0.4 ... 0.65 Hz/(MV/m)2

required power to keep the gradient
and phase constant:

∆ f FT f cav f gen–= K– E
2=

Pcomp
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-------------------
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----------
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⇒ At high gradients significant additional power would be
 required to keep the gradient and phase constant!

⇒  Increase stiffness of the cavity or
use a fast piezo-tuner foractiveLorentz-force compensation.
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• Simulation for 35 MV/m (TESLA800):
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• Standing Waves in the Input Coupler / Waveguide:
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• CW Operation of s.c. Cavities:
- Microphonics: modulation of resonance frequency by external

mechanical disturbances
- thin wall-thickness and small bandwidth of superconducting cavities

⇒   sensitive to microphonics

detuning of cavity due to microphonics
  ⇒ additional power required to keep

the gradient and phase constant:

for matched QL:

Pcomp

P ∆f 0=( )
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⇒ At high QL (i.e. low beam current)

  to keep the gradient and phase constant!
significant additional power would be required
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• Example: TESLA 9-cell Cavity at 10 MV/m
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beam current: 1mA beam current: 0.1mA

⇒ At low beam currents microphonics should be low!
Use a fast tuner to compensate external

mechanical disturbances.
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⇒ fast frequency tuner based on piezotranslators!
II  How?

• Principle:

piezo
He-tank

He-tank
bellow

bellow
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• Proof of Principle Setup of a fast Piezo-Tuner:

Piezo-Actuator:

Umax=150V
l = 39 mm

∆l≈ 4 to 5µm at 2K
∆fmax, static≈ 500Hz

He-tank

piezo

tuning mechanism

+ cavity
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• Fundamentals of Piezo-Actuators:

multilayer design

+

electric dipoles:
anisotropic crystal structure
after poling

randomly orientated
Weiss domains
(group of parallel
orientated dipoles)

before poling:

poling (electric field applied to the piezo):
electric dipoles align, material expands along the field axis

after poling:
remanent polarization

When an electric voltage
is applied, the Weiss
domains increases
their alignment and
the material expands.
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• New Piezo-Holder for two Stacks

preload

piezostack piezostack
place for 2nd

with Lever Motion Amplifier:
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• Prototype Tuner for TESLA

tuning

cavity with
He-tank

mechanical tuner
(dog bone design)

possible position
for piezos?

⇒ under study
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• Piezostacks:

- maximum stroke at room temperature: ≈ 0.1% of stack length
without external forces

- maximum stroke at 2K: ≈ 10 to 15% of stroke at room temp.

- stiffness: depends on Young’s Modulus of the ceramic
(≈ 25% that of steel), the cross section and the length of the ceramic
(plus a number of nonlinear parameters)

- maximum force generation:high pushing forces < stiffness * max. stroke,
but reduction in displacement!

-  preload: zero point is offset, but piezostack will not lose any travel

- mechanical damage: piezo ceramics cannot withstand high pulling forces
or shear forces

- electrical behavior: capacitor (first order estimation)

- heat generation: loss factor in the order of 1 to 2% (at room temp.)



M. Liepe, April 2001

• Control Principle: Lorentz-Force Compensation

⇒ Adaptive feedforward control:

system model

optimize
control table

piezo

rf pulse
cavity

detuning
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• Control Principle: Compensation of Microphonics

system model piezo

cavity

detuning

calculate
control signal

⇒ A simple proportional feedback control can not be used!
(mechanical resonances)
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III  Can it work?

The piezo-actuator has to work reliable at

• high dynamic operation:
  TESLA: 3⋅109 rf-pulses in 10 years of operation (10 Hz)

   SNS:       2⋅1010 rf-pulses in 10 years of operation (60 Hz)

• at 2K:
  only a fewµm travel ⇒ low mechanical stress

• in radiational environment:
 up to some MGray / 10 years
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• High Dynamic Operation of a Piezo:
Statement by PIEZOMECHANIK:

“This operation mode is characterized by the high acceleration forces act-
ing in the piezostack or ring. One popular application in the near future will
be thepiezo triggered Diesel fuel injection, where the control valve is
piezoactuated in theµs-range with maximum stroke.

In the early days of this application, a typical failure mechanism was the
generation of cracks inside the ceramic, which was the starting point for
electrical break down and short-circuiting of the stacks.  ...

An essential contribution to the stack’s reliability under dynamic cycling is
thesufficiently high preloading of stacks in the range of 50% to 100% of
the specified maximum loads.

PIEZOMECHANIK’s actuator are well-known for their excellent stability

under high dynamic operation showing aperformance of more than 1010

cycles. ...”
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• Piezo used for Diesel Fuel Injection:

U = -60 to 160 V
size: 30 x 7 x 7  mm

∆l ≈ 40 µm at room temp.
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• Sensitivity of a Piezostack to Radiation:

Component Damage and utility

piezo-electrical
crystal

magnetic
materials
inorganic
materials

resistors

capacitors

electron tubes

transducers

organic
isolation

semiconductors

γ-radiation [gray] 1 102 104 106 1010 1012108

From Cern Report: 75-18

TESLA:
Radiation limit:
average 10 Gray/h
(2K heat load 0.1W/m)
i.e. < 2 MGray / 20 years

> 100 MGray

Damage
incipient to mild
mild to moderate
moderate to severe

Utility
nearly always usable
often satisfactory
limited use
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• Controllability:

for a linear system:
ideal system: same coupling to all modes:

real system:

⇒ K is invertible, if all rows are≠ 0,
     i.e. if thepiezo is coupling to all modes
    (and if all rows and columns are different).

If not, place second piezo at aappropriate place.

∆f ω1( )
…

∆f ωN( )

K

Vpiezo ω1( )
…

Vpiezo ωN( )

=

∆f ω1( )
…

∆f ωN( )

K11 … K1N

… … …
KN1 … KNN

Vpiezo ω1( )
…

Vpiezo ωN( )

=
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IV  First Results

• used piezo as asensor:
⇒ measure piezo-voltage
⇒ oscillations (rf-pulses, microphonics)

• tested piezo as anactive element:
⇒ apply voltage to piezo
⇒ damping / excitation of oscillations
⇒ Lorentz-force compensation
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• The Piezo as Sensor:
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mechanical oscillations due to Lorentz-force detuning:
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• Spectrum of the mechanical Oscillations
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• Frequency Spectrum of Oscillation for 2 Cavities (30MV/m 2Hz)

100 200 300 400 500 600
0

1

2

3

4

5

6

7

frequency [Hz]

am
pl

itu
de

 [a
rb

. u
ni

ts
]



M. Liepe, April 2001

• Comparison between the Piezo Signal and the Phase-Variation
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• Microphonics Spectrum:
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• Piezo as an active Element:
   Excitation of mechanical Modes

2 dominating groups of
mechanical modes
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TTF 9-cell cavity operated in pulsed mode at 23.5 MV/m (TESLA500)
• Piezo as an active Element: Lorentz-Detuning Compensation
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• Lorentz-Detuning Compensation:
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Simulation:

Measurement:
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• Future Plans:

Proof of Principle: Active Lorentz-Detuning Compensation

Investigate
mechanical oscil-
lations of cavities
in detail:

measurements,
FE-models.

Design, built and
test a prototype
piezo-tuner.

Develop feedfor-
ward control.

Test reliability:

Long term oper-
ation at 2K and
radiation hard-
ness of different
types of piezoac-
tuators.

Reliable, well understood piezoelectric tuner.

work
started


